
1

G52CPP
C++ Programming

Lecture 14

Dr Jason Atkin

http://www.cs.nott.ac.uk/~jaa/cpp/
g52cpp.html

2

Last Lecture
• Automatically created methods:

– A default constructor – so that objects can be created
without defining a constructor

– A copy constructor – used to copy objects
– An assignment operator – an example of operator

overloading : changing the meaning of an operator
(i.e. =)

– A destructor – calls member destructors

• Conversion constructors

3

This Lecture

• Inheritance and constructors
– Virtual destructors

• Namespaces and scoping

• Some standard class library classes
– String
– Input and output

4

Inheritance and constructors

5

Construction and destruction (1)
struct Base
{

Base()
{

printf("Base constructed\n");
}

~Base()
{

printf("Base destroyed\n");
}

};

struct Derived : public Base
{

…
}

int main()
{

Derived d;
}

6

Construction and destruction (1)
struct Base
{

Base()
{

printf("Base constructed\n");
}

~Base()
{

printf("Base destroyed\n");
}

};

struct Derived : public Base
{

Derived()
{ printf("Derived constructed\n"); }

~Derived()
{ printf("Derived destroyed\n"); }

};

Source Code:

{ Derived d; }

Purpose:

Create object d, allow it to
be destroyed as stack frame
exits.

Output:

?

lec14a.cpp

7

Construction and destruction (1)
struct Base
{

Base()
{

printf("Base constructed\n");
}

~Base()
{

printf("Base destroyed\n");
}

};

struct Derived : public Base
{

Derived()
{ printf("Derived constructed\n"); }

~Derived()
{ printf("Derived destroyed\n"); }

};

Source Code:

{ Derived d; }

Purpose:

Create object d, allow it to
be destroyed as stack frame
exits.

Output:

Base constructed
Derived constructed

Derived destroyed
Base destroyed

lec14a.cpp

8

Construction and destruction (1)
struct Base
{

Base()
{

printf("Base constructed\n");
}

~Base()
{

printf("Base destroyed\n");
}

};

struct Derived : public Base
{

…
}

int main()
{

Derived* pD = new Derived;
delete pD;

}

9

Construction and destruction (2)
struct Base
{

Base()
{

printf("Base constructed\n");
}

~Base()
{

printf("Base destroyed\n");
}

};

struct Derived : public Base
{

Derived()
{ printf("Derived constructed\n"); }

~Derived()
{ printf("Derived destroyed\n"); }

};

Source Code:

Derived* pD =
new Derived;

delete pD;

Purpose:

Create object d, then
destroy it

Output:

?

?

lec14b.cpp

10

Construction and destruction (2)
struct Base
{

Base()
{

printf("Base constructed\n");
}

~Base()
{

printf("Base destroyed\n");
}

};

struct Derived : public Base
{

Derived()
{ printf("Derived constructed\n"); }

~Derived()
{ printf("Derived destroyed\n"); }

};

Source Code:

Derived* pD =
new Derived;

delete pD;

Purpose:

Create object d, then
destroy it

Output:

Base constructed
Derived constructed

Derived destroyed
Base destroyed

lec14b.cpp

11

Constructors and destructors

• Construction occurs in the order:
– Base class first, then derived class

• Destruction occurs in the order:
– Derived class first, then base class

• Effects:
– Derived class part of the object can always assume that base

class part exists
• Derived class can assume that the base class has been constructed

when the derived class is constructed
• Derived class can assume that the base class has not yet been

destroyed at the point the derived destructor is used
– Derived class will NOT exist/be initialised when the base class

constructor/destructor is called, so:
– Do not call virtual functions from the constructor or

destructor

12

Construction and destruction (3)
struct Base
{

Base()
{

printf("Base constructed\n");
}

~Base()
{

printf("Base destroyed\n");
}

};

struct Derived : public Base
{

…
}

Base* pD = new Derived;
delete pD;

13

Construction and destruction (3)
struct Base
{

Base()
{

printf("Base constructed\n");
}

~Base()
{

printf("Base destroyed\n");
}

};

struct Derived : public Base
{

Derived()
{ printf("Derived constructed\n"); }

~Derived()
{ printf("Derived destroyed\n"); }

};

Source Code:

Base* pD =
new Derived;

delete pD;

Purpose:

Create object d, then
destroy it through a base
class pointer

Output:

?

lec14c.cpp

14

Construction and destruction (3)
struct Base
{

Base()
{

printf("Base constructed\n");
}

~Base()
{

printf("Base destroyed\n");
}

};

struct Derived : public Base
{

Derived()
{ printf("Derived constructed\n"); }

~Derived()
{ printf("Derived destroyed\n"); }

};

Source Code:

Base* pD =
new Derived;

delete pD;

Purpose:

Create object d, then
destroy it through a base
class pointer

Output:

Base constructed
Derived constructed
Base destroyed

NOT Derived destroyed

lec14c.cpp

15

Construction and destruction (4)
struct VirtualBase
{

VirtualBase()
{

printf("Base constructed\n");
}

virtual ~VirtualBase()
{

printf("Base destroyed\n");
}

};

struct VirtualDerived : public virtualBase
{

…
}

Virtual Destructor

VirtualBase* pD = new VirtualDerived;
delete pD;

16

Construction and destruction (4)
struct VirtualBase
{

VirtualBase()
{ printf("Base constructed\n"); }

virtual ~VirtualBase()
{ printf("Base destroyed\n"); }

};

struct VirtualDerived : public
VirtualBase

{
VirtualDerived()

{printf("Derived constructed\n");}

~VirtualDerived()
{ printf("Derived destroyed\n");}

};

Source Code:

VirtualBase* pD =
new VirtualDerived;

delete pD;

Purpose:

Create object d, then destroy it
through base class pointer.

Output:

?

lec14d.cpp

17

Construction and destruction (4)
struct VirtualBase
{

VirtualBase()
{printf("Base constructed\n");}

virtual ~VirtualBase()
{printf("Base destroyed\n");}

};

struct VirtualDerived : public
VirtualBase

{
VirtualDerived()

{printf("Derived constructed\n");}

~VirtualDerived()
{ printf("Derived destroyed\n");}

};

Source Code:

VirtualBase* pD =
new VirtualDerived;

delete pD;

Purpose:

Create object d, then destroy it
through base class pointer.

Output:

Base constructed
Derived constructed
Derived destroyed
Base destroyed

18

Virtual destructors
• If destructor is NOT virtual then it will NOT be

called if the object is destroyed through a base
class pointer, reference or function
– Since type of pointer/reference/function will

determine the destructor to call

• But, if you make destructor virtual then the
objects of that class will have a (hidden) vtable
pointer (or equivalent)
– i.e. they grow

19

Virtual destructors: Question
• Do we make the destructor virtual or not?
• My advice: (only advice!!!)

– Make it virtual if and only if there are ANY other virtual
functions

• No loss since vtable pointer already exists anyway
• Probably using object through a base class

pointer/reference, so object potentially COULD be
destroyed that way too

– If there are no other virtual functions
AND you do not expect the object to be delete d
through a pointer or reference to the base class
THEN do not make your destructor virtual

• Otherwise you add an unnecessary vtable pointer (or
equivalent) to objects

20

Scoping

21

Calling base-class functions

• If a function is virtual, you can still call the base
class version from the sub-class version
– Useful so that you don’t need to repeat code

• From Java you can call the (immediate) super-
class version of a method from within a method
– Uses the super.foo() notation

• The C++ version is more flexible…
– You can call any base-class version, not just the

immediate base-class

• C++ uses the scoping operator ::
– Example…

22

Example of scoping operator
class Base
{
public:

virtual void DoSomething()
{ x = x + 5; }

private:
int x;

};
class Derived : public Base
{
public:

virtual void DoSomething()
{

y = y + 5;
Base::DoSomething();

}
private:

int y;
};

Base class version of
DoSomething() adds 5 to x

Derived class version of
DoSomething() adds 5 to y

THEN calls the base class
version, which will add 5 to x

This EXPLICITLY calls the base-class version

23

Namespaces and scoping

24

Namespaces
• Namespaces are used to avoid name conflicts

– Only the name is affected
• To put code in a namespace use:

namespace <NamespaceName>

{

<put code for classes or functions here>

}

• Can use scoping to specify a namespace to ‘look in’:
<namespace>::<class>::<function>

e.g. MyNameSpace::MyClass::foo();

<namespace>::<globalfunction>

e.g. MyNameSpace::bar();

25

Namespaces

• Can avoid needing to keep saying <namespace>::
specify ‘using namespace <namespace> ’

– From that point onwards the namespace will be
checked when resolving names

• The standard class library is in the std namespace

– The C-type functions are also in the global
(unnamed) namespace, so we have been able to
ignore namespaces so far

– A common line near to the start of C++ programs:
using namespace std;

26

Example of namespace
#include <string>
#include <iostream>
using namespace std;

namespace cfj
{

void MyPrintFunction1()
{

// Do something
}

// Function in cfj namespace,
// so can use MyPrintFunction1
// without ‘::’ or ‘using’

void MyPrintFunction2()
{

MyPrintFunction1();
}

}

// Not in cfj namespace!
void MyPrintFunction3()
{

cfj::MyPrintFunction1();
}

using namespace cfj;
// From this point onwards,
// cfj namespace will be
// checked

int main()
{

string s1("Test string");
int i = 1;

MyPrintFunction1();
MyPrintFunction2();
MyPrintFunction3();

}

lec14e.cpp

27

The scoping operator

• You can use the scoping operator to call
global functions or access global variables
– use :: with nothing before it

• Also used to denote that a function is a
class member in a definition, e.g.

void Sub::modify() { … }

• Left of scoping operator is
– blank (to access a global variable/function)
– class name (to access member of that class)
– namespace name (to use that namespace)

28

Using scoping to access data
#include <cstdio>
int i = 1; // Global

struct Base
{

int i;

Base()
: i(3)
{}

};

struct Sub : public Base
{

int i;

Sub()
: i(2)
{}

void modify()
{

int i = 7; // Local
::i = 4; // Global
Sub::i = 5; // Sub's i
Base::i = 6; // Base's i

}
};

int main()
{

Sub s;
printf("%d %d %d\n",

i, s.i, s.Base::i);
s.modify();
printf("%d %d %d\n",

i, s.i, s.Base::i);
return 0;

}lec14f.cpp

29

Standard class library classes

An introduction
We will see more later

30

string and std namespace
• The string class is in the std namespace
• Can be accessed as std::string

• Three of the string constructors:
string();

• Default empty string

string(const char* str);
• From a char* type string

string(const string& str);
• From another string – the copy constructor

• #include <string> for declarations

31

string class – for reference
• string class has many member functions

append() concatenate more text to the string
substr() return a substring of some size
insert() insert some text into the string
replace() replace part of a string
erase() delete/remove part of a string
assign() replace content of string
compare() lexically compare two strings
find() search for some text in the string
rfind() find, starting at the end
c_str() obtain a const char* for the string

• And overloads a number of operators
Assignment: =
Comparison: == != < <= > >=
Concatenation: + +=
Character at: []

32

streams for input/output

• C++ input/output classes use streams
• Three standard streams exist already

– istream cin; (matches stdin)
– ostream cout; (matches stdout)
– ostream cerr; (matches stderr)

• Header file includes the declarations:
– #include <iostream>

• They are in std namespace
– Use std::cin , std::cout , etc

• >> and << operators overloaded for input / output
• endl sent to a stream will output \n and flush

33

Example
#include <string>
#include <iostream>

using namespace std;

int main()
{

string s1("Test string");
int i = 1;

cin >> i;

cout << s1 << " " << i << endl;

cerr << s1.c_str() << endl;
}

34

Example
#include <string>
#include <iostream>

using namespace std;

int main()
{

string s1("Test string");
int i = 1;

cin >> i;

cout << s1 << " " << i << endl;

cerr << s1.c_str() << endl;
}

Header files for string and i/o

Look in std namespace
for the names which follow
e.g. cin, cout, string

Overloaded operator - input

Overloaded operator - output

Convert string to const char*

35

File access using streams

• ifstream object - open the file for input
• ofstream object - open the file for output
• fstream object – specify what to open file for

– Takes an extra parameter on open (input/output/both)

• Use the << and >> operators to read/write
• In the same way as for cin and cout

• Simple examples follow, for reference
• Read the documentation for more information

36

File output example

#include <fstream>

using namespace std;

int main()

{

ofstream file;

// Open a file

file.open("file.txt");

// Write to file

file << "Hello file\n“ << 75;

// Manually close file

file.close();

return 0;

}

Since the ofstream object is
destroyed (with the stack frame)
the file would close anyway

37

File input example
#include <fstream>
#include <iostream>
using namespace std;
int main()
{

ifstream file;
char output[100];
string str;
int x;
file.open("file.txt");
file >> output;
file >> str;
file >> x;
file.close();
cout << output << endl;
cout << str << endl;
cout << x << endl;

}

Text loaded (and output using cout)
matches what was written in the
previous sample

Note that the array has enough
space to hold the loaded data

Those people struggling with char* s
may want to consider string for the CW

38

stringstream

#include <iostream>
#include <sstream>

using namespace std;

int main()
{

stringstream strstream;
string str;

short year = 1996;
short month = 7;
short day = 28;

strstream << year << "/";

strstream << month << "/";

strstream << day;

strstream >> str;

cout << "date: “ << str

<< endl;

return 0;

}

Send data to the stringstream object, a bit at a time
Extract it out again afterwards, as one string

I prefer sprintf() , for easier formatting, but this is ‘more C++’

39

string/stream comments

• You may use the standard C++ classes
in the coursework if you wish
– Including the string or stream classes

• wstring is a wide-character version
– basic_string is a template class
– string and wstring are instantiations

• string is also a container class
– Can be treated as a container
– e.g. use size()

• Know these exist, and how they are used

40

Exam: do I need to know all of this?

• I will expect you to be able to understand code
that you have seen in lectures
– i.e. if you can understand the lecture slides and

samples and what the code does then you meet that
criterion

– e.g. if you see the code cout << x then know that it
sends x to the output (e.g. screen) and that it uses
operator overloading to do this

• I will expect you to know the basics of the
standard C++ class library
– i.e. things we cover in lectures
– We will see something about the STL later

41

Next Lecture

• Conversion Operators
• Friends

• Casting
– static cast
– dynamic cast
– const cast
– reinterpret cast

